The Environment and Society

Learning Objectives

  1. Describe climate change and its importance
  2. Describe what is meant by the assertion that environmental problems are human problems.
  3. Understand the challenges presented by pollution, garbage, e-waste, and toxic hazards
  4. Discuss real-world instances of environmental racism

The subfield of environmental sociology studies the way humans interact with their environments. This field is closely related to human ecology, which focuses on the relationship between people and their built and natural environment. This is an area that is garnering more attention as extreme weather patterns and policy battles over climate change dominate the news. Perhaps more than anything else, environmental sociologists emphasize that environmental problems are the result of human decisions and activities that harm the environment. Masses of individuals acting independently of each other make decisions and engage in activities that harm the environment, as when we leave lights on, keep our homes too warm in the winter or too cool in the summer, and drive SUVs and other motor vehicles that get low gas mileage. Corporations, government agencies, and other organizations also make decisions and engage in activities that greatly harm the environment. Sometimes individuals and organizations know full well that their activities are harming the environment, and sometimes they just act carelessly without much thought about the possible environmental harm of their actions. Still, the environment is harmed whether or not they intend to harm it.

The Tragedy of the Commons

You might have heard the expression “the tragedy of the commons.” In 1968, an article of the same title written by Garrett Hardin described how a common pasture was ruined by overgrazing. But Hardin was not the first to notice the phenomenon. Back in the 1800s, Oxford economist William Forster Lloyd looked at the devastated public grazing commons and the unhealthy cattle subject to such limited resources, and saw, in essence, that the carrying capacity of the commons had been exceeded. However, since no one was held responsible for the land (as it was open to all), no one was willing to make sacrifices to improve it. Cattle grazers benefitted from adding more cattle to their herds, but they did not have to take on the responsibility of the lands that were being damaged by overgrazing. So there was an incentive for them to add more head of cattle, and no incentive for restraint.

Satellite photos of Africa taken in the 1970s showed this practice to dramatic effect. The images depicted a dark irregular area of more than 300 square miles. There was a large fenced area, where plenty of grass was growing. Outside the fence, the ground was bare and devastated. The reason was simple: the fenced land was privately owned by informed farmers who carefully rotated their grazing animals and allowed the fields to lie fallow periodically. Outside the fence was land used by nomads. Like the herdsmen in 1800s Oxford, the nomads increased their heads of cattle without planning for its impact on the greater good. The soil eroded, the plants died, then the cattle died, and, ultimately, some of the people died.

How does this lesson affect those of us who don’t need to graze our cattle? Well, like the cows, we all need food, water, and clean air to survive. With the increasing world population and the ever-larger megalopolises with tens of millions of people, the limit of the earth’s carrying capacity is called into question. When too many take while giving too little thought to the rest of the population, whether cattle or humans, the result is usually tragedy.

Climate Change

While you might be more familiar with the phrase “global warming,” climate change is the term now used to refer to long-term shifts in temperatures due to human activity and, in particular, the release of greenhouse gases into the environment. The planet as a whole is warming, but the term climate change acknowledges that the short-term variations in this process can include both higher and lower temperatures, despite the overarching trend toward warmth.

Climate change is a deeply controversial subject, despite decades of scientific research and a high degree of scientific consensus that supports its existence. For example, according to NASA scientists, 2013 tied with 2009 and 2006 as the seventh-warmest year since 1880, continuing the overall trend of increasing worldwide temperatures (NASA 2014). One effect of climate change is more extreme weather. There are increasingly more record-breaking weather phenomena, from the number of Category 4 hurricanes to the amount of snowfall in a given winter. These extremes, while they make for dramatic television coverage, can cause immeasurable damage to crops, property, and even lives.

So why is there a controversy? The National Oceanographic and Atmospheric Association (NOAA) recognizes the existence of climate change. So do nearly 200 countries that signed the Kyoto Protocol, a document intended to engage countries in voluntary actions to limit the activity that leads to climate change. (The United States was not one of the 200 nations committed to this initiative to reduce environmental damage, and its refusal to sign continues to be a source of contention.) What’s the argument about? For one thing, for companies making billions of dollars in the production of goods and services, the idea of costly regulations that would require expensive operational upgrades has been a source of great anxiety. They argue via lobbyists that such regulations would be disastrous for the economy. Some go so far as to question the science used as evidence. There is also a lot of finger-pointing among countries, especially when the issue arises of who will be permitted to pollute.

World systems analysis suggests that while, historically, core nations (like the United States and Western Europe) were the greatest source of greenhouse gases, they have now evolved into postindustrial societies. Industrialized semi-peripheral and peripheral nations are releasing increasing quantities of greenhouse gases, such as carbon dioxide. The core nations, now post-industrial and less dependent on greenhouse-gas-causing industries, wish to enact strict protocols regarding the causes of global warming, but the semi-peripheral and peripheral nations rightly point out that they only want the same economic chance to evolve their economies. Since they were unduly affected by the progress of core nations, if the core nations now insist on “green” policies, they should pay offsets or subsidies of some kind. There are no easy answers to this conflict. It may well not be “fair” that the core nations benefited from ignorance during their industrial boom.

The international community continues to work toward a way to manage climate change. During the 2009 United Nations Climate Change Conference in Copenhagen, the United States agreed to fund global climate change programs. In September 2010, President Obama announced the Global Climate Change Initiative (GCCI) as part of his administration’s Global Development Policy. The GCCI is a United States Agency for International Development (USAID) funding program intended to improve the economic and environmental sustainability of peripheral and semi-peripheral countries by encouraging the use of alternative, low-carbon, energy sources with financial incentives. Programming is organized around three pillars: (1) climate change adaptation, (2) clean energy, and (3) sustainable landscapes (Troilo 2012).

Pollution

Pollution describes what happens when contaminants are introduced into an environment (water, air, land) at levels that are damaging. Environments can often sustain a limited amount of contaminants without marked change, and water, air, and soil can “heal” themselves to a certain degree. However, once contaminant levels reach a certain point, the results can be catastrophic.

Water

Look at your watch. Wait fifteen seconds. Then wait another fifteen seconds. In that time, two children have died from lack of access to clean drinking water. Access to safe water is one of the most basic human needs, and it is woefully out of reach for millions of people on the planet. Many of the major diseases that peripheral countries battle, such as diarrhea, cholera, and typhoid, are caused by contaminated water. Often, young children are unable to go to school because they must instead walk several hours a day just to collect potable water for their family. The situation is only getting more dire as the global population increases. Water is a key resource battleground in the twenty-first century.

As every child learns in school, 70 percent of earth is made of water. Despite that figure, there is a finite amount of water usable by humans and it is constantly used and reused in a sustainable water cycle. The way we use this abundant natural resource, however, renders much of it unsuitable for consumption and unable to sustain life. For instance, it takes two and a half liters of water to produce a single liter of Coca-Cola. The company and its bottlers use close to 300 billion liters of water a year, often in locales that are short of useable water (Blanchard 2007).

As a consequence of population concentrations, water close to human settlements is frequently polluted with untreated or partially treated human waste (sewage), chemicals, radioactivity, and levels of heat sufficient to create large “dead zones” incapable of supporting aquatic life. The methods of food production used by many core nations rely on liberal doses of nitrogen and pesticides, which end up back in the water supply. In some cases, water pollution affects the quality of the aquatic life consumed by water and land animals. As we move along the food chain, the pollutants travel from prey to predator. Since humans consume at all levels of the food chain, we ultimately consume the carcinogens, such as mercury, accumulated through several branches of the food web.

Soil

You might have read The Grapes of Wrath in English class at some point in time. Steinbeck’s tale of the Joads, driven out of their home by the Dust Bowl, is still playing out today. In China, as in Depression-era Oklahoma, over-tilling soil in an attempt to expand agriculture has resulted in the disappearance of large patches of topsoil.

Soil erosion and desertification are just two of the many forms of soil pollution. In addition, all the chemicals and pollutants that harm our water supplies can also leach into soil with similar effects. Brown zones where nothing can grow are common results of soil pollution. One demand the population boom makes on the planet is a requirement for more food to be produced. The so-called “Green Revolution” in the 1960s saw chemists and world aid organizations working together to bring modern farming methods, complete with pesticides, to developing countries. The immediate result was positive: food yields went up and burgeoning populations were fed. But as time has gone on, these areas have fallen into even more difficult straits as the damage done by modern methods leave traditional farmers with less than they had to start.

Dredging certain beaches in an attempt to save valuable beachfront property from coastal erosion has resulted in greater storm impact on shorelines, and damage to beach ecosystems (Turneffe Atoll Trust 2008). These dredging projects have damaged reefs, sea grass beds, and shorelines and can kill off large swaths of marine life. Ultimately, this damage threatens local fisheries, tourism, and other parts of the local economy.

Garbage

A pile of garbage and grasses is shown here.
Figure 20.13 Where should garbage go when you’ve run out of room? This is a question that is increasingly pressing the planet. (Photo courtesy of Kevin Krejci/flickr)

Where is your last cell phone? What about the one before that? Or the huge old television set your family had before flat screens became popular? For most of us, the answer is a sheepish shrug. We don’t pay attention to the demise of old items, and since electronics drop in price and increase in innovation at an incredible clip, we have been trained by their manufacturers to upgrade frequently.

Garbage creation and control are major issues for most core and industrializing nations, and it is quickly becoming one of the most critical environmental issues faced in the United States. People in the United States buy products, use them, and then throw them away. Did you dispose of your old electronics according to government safety guidelines? Chances are good you didn’t even know there are guidelines. Multiply your electronics times a few million, take into account the numerous toxic chemicals they contain, and then imagine either burying those chemicals in the ground or lighting them on fire.

Those are the two primary means of waste disposal in the United States: landfill and incineration. When it comes to getting rid of dangerous toxins, neither is a good choice. Styrofoam and plastics that many of us use every day do not dissolve in a natural way. Burn them, and they release carcinogens into the air. Their improper incineration (intentional or not) adds to air pollution and increases smog. Dump them in landfills, and they do not decompose. As landfill sites fill up, we risk an increase in groundwater contamination.

What Should Apple (and Friends) Do about E-Waste?

A lot filled with computers and other old electronics is shown here.
Figure 20.14 A parking lot filled with electronic waste, known as e-waste. (Photo courtesy of U.S. Army Environmental Command/flickr)

Electronic waste, or e-waste, is one of the fastest growing segments of garbage. And it is far more problematic than even the mountains of broken plastic and rusty metal that plague the environment. E-waste is the name for obsolete, broken, and worn-out electronics—from computers to mobile phones to televisions. The challenge is that these products, which are multiplying at alarming rates thanks in part to planned obsolescence (the designing of products to quickly become outdated and then be replaced by the constant emergence of newer and cheaper electronics), have toxic chemicals and precious metals in them, which makes for a dangerous combination.

So where do they go? Many companies ship their e-waste to developing nations in Africa and Asia to be “recycled.” While they are, in some senses, recycled, the result is not exactly clean. In fact, it is one of the dirtiest jobs around. Overseas, without the benefit of environmental regulation, e-waste dumps become a kind of boomtown for entrepreneurs willing to sort through endless stacks of broken-down electronics for tiny bits of valuable copper, silver, and other precious metals. Unfortunately, in their hunt, these workers are exposed to deadly toxins.

Governments are beginning to take notice of the impending disaster, and the European Union, as well as the state of California, put stricter regulations in place. These regulations both limit the amount of toxins allowed in electronics and address the issue of end-of-life recycling. But not surprisingly, corporations, while insisting they are greening their process, often fight stricter regulations. Meanwhile, many environmental groups, including the activist group Greenpeace, have taken up the cause. Greenpeace states that it is working to get companies to:

  1. measure and reduce emissions with energy efficiency, renewable energy, and energy policy advocacy
  2. make greener, efficient, longer lasting products that are free of hazardous substances
  3. reduce environmental impacts throughout company operations, from choosing production materials and energy sources right through to establishing global take-back programs for old products (Greenpeace 2011).

Greenpeace produces annual ratings of how well companies are meeting these goals so consumers can see how brands stack up. For instance, Apple moved from ranking fourth overall to sixth overall from 2011 to 2012. The hope is that consumers will vote with their wallets, and the greener companies will be rewarded.

Air

China’s fast-growing economy and burgeoning industry have translated into notoriously poor air quality. Smog hangs heavily over the major cities, sometimes grounding aircraft that cannot navigate through it. Pedestrians and cyclists wear air-filter masks to protect themselves. In Beijing, citizens are skeptical that the government-issued daily pollution ratings are trustworthy. Increasingly, they are taking their own pollution measurements in the hopes that accurate information will galvanize others to action. Given that some days they can barely see down the street, they hope action comes soon (Papenfuss 2011).

Humanity, with its growing numbers, use of fossil fuels, and increasingly urbanized society, is putting too much stress on the earth’s atmosphere. The amount of air pollution varies from locale to locale, and you may be more personally affected than you realize. How often do you check air quality reports before leaving your house? Depending on where you live, this question can sound utterly strange or like an everyday matter. Along with oxygen, most of the time we are also breathing in soot, hydrocarbons, carbon, nitrogen, and sulfur oxides.

Much of the pollution in the air comes from human activity. How many college students move their cars across campus at least once a day? Who checks the environmental report card on how many pollutants each company throws into the air before purchasing a cell phone? Many of us are guilty of taking our environment for granted without concern for how everyday decisions add up to a long-term global problem. How many minor adjustments can you think of, like walking instead of driving, that would reduce your overall carbon footprint?

Remember the “tragedy of the commons.” Each of us is affected by air pollution. But like the herder who adds one more head of cattle to realize the benefits of owning more cows but who does not have to pay the price of the overgrazed land, we take the benefit of driving or buying the latest cell phones without worrying about the end result. Air pollution accumulates in the body, much like the effects of smoking cigarettes accumulate over time, leading to more chronic illnesses. And in addition to directly affecting human health, air pollution affects crop quality as well as heating and cooling costs. In other words, we all pay a lot more than the price at the pump when we fill up our tank with gas.

Toxic and Radioactive Waste

Radioactivity is a form of air pollution. While nuclear energy promises a safe and abundant power source, increasingly it is looked upon as a danger to the environment and to those who inhabit it. We accumulate nuclear waste, which we must then keep track of long term and ultimately figure out how to store the toxic waste material without damaging the environment or putting future generations at risk.

The 2011 earthquake in Japan illustrates the dangers of even safe, government-monitored nuclear energy. When disaster occurs, how can we safely evacuate the large numbers of affected people? Indeed, how can we even be sure how far the evacuation radius should extend? Radiation can also enter the food chain, causing damage from the bottom (phytoplankton and microscopic soil organisms) all the way to the top. Once again, the price paid for cheap power is much greater than what we see on the electric bill.

An airplane view of oil-clogged sandbars and the surrounding ocean water tainted by oil is shown here.
Figure 20.15 An aerial view of the Gulf Coast, taken in May 2010, illustrates the damage done by the BP Deep Water Horizon spill. (Photo courtesy of Jeff Warren/flickr)

The enormous oil disaster that hit the Louisiana Gulf Coast in 2010 is just one of a high number of environmental crises that have led to toxic residue. They include the pollution of the Love Canal neighborhood of the 1970s to the Exxon Valdez oil tanker crash of 1989, the Chernobyl disaster of 1986, and Japan’s Fukushima nuclear plant incident following the earthquake in 2011. Often, the stories are not newsmakers, but simply an unpleasant part of life for the people who live near toxic sites such as Centralia, Pennsylvania and Hinkley, California. In many cases, people in these neighborhoods can be part of a cancer cluster without realizing the cause.

Oil spilled on a beach is shown here.
Figure 20.16 Oil on the gulf shore beaches caused great destruction, killing marine and land animals and crippling local business. (Photo courtesy of AV8ter/flickr)

Environmental Racism

Environmental racism refers to the way in which minority group neighborhoods (populated primarily by people of color and members of low socioeconomic groups) are burdened with a disproportionate number of hazards, including toxic waste facilities, garbage dumps, and other sources of environmental pollution and foul odors that lower the quality of life. All around the globe, members of minority groups bear a greater burden of the health problems that result from higher exposure to waste and pollution. This can occur due to unsafe or unhealthy work conditions where no regulations exist (or are enforced) for poor workers, or in neighborhoods that are uncomfortably close to toxic materials.

The statistics on environmental racism are shocking. Research shows that it pervades all aspects of African Americans’ lives: environmentally unsound housing, schools with asbestos problems, facilities and playgrounds with lead paint. A twenty-year comparative study led by sociologist Robert Bullard determined “race to be more important than socioeconomic status in predicting the location of the nation’s commercial hazardous waste facilities” (Bullard et al. 2007). His research found, for example, that Black children are five times more likely to have lead poisoning (the leading environmental health threat for children) than their White counterparts, and that a disproportionate number of people of color reside in areas with hazardous waste facilities (Bullard et al. 2007). Sociologists with the project are examining how environmental racism is addressed in the long-term cleanup of the environmental disasters caused by Hurricane Katrina.

American Indian Tribes and Environmental Racism

Native Americans are unquestionably victims of environmental racism. The Commission for Racial Justice found that about 50 percent of all American Indians live in communities with uncontrolled hazardous waste sites (Asian Pacific Environmental Network 2002). There’s no question that, worldwide, indigenous populations are suffering from similar fates.

For Native American tribes, the issues can be complicated—and their solutions hard to attain—because of the complicated governmental issues arising from a history of institutionalized disenfranchisement. Unlike other racial minorities in the United States, Native American tribes are sovereign nations. However, much of their land is held in “trust,” meaning that “the federal government holds title to the land in trust on behalf of the tribe” (Bureau of Indian Affairs 2012). Some instances of environmental damage arise from this crossover, where the U.S. government’s title has meant it acts without approval of the tribal government. Other significant contributors to environmental racism as experienced by tribes are forcible removal and burdensome red tape to receive the same reparation benefits afforded to non-Indians.

To better understand how this happens, let’s consider a few example cases. The home of the Skull Valley Band of Goshute Indians was targeted as the site for a high-level nuclear waste dumping ground, amid allegations of a payoff of as high as $200 million (Kamps 2001). Keith Lewis, an indigenous advocate for Indian rights, commented on this buyout, after his people endured decades of uranium contamination, saying that “there is nothing moral about tempting a starving man with money” (Kamps 2001). In another example, the Western Shoshone’s Yucca Mountain area has been pursued by mining companies for its rich uranium stores, a threat that adds to the existing radiation exposure this area suffers from U.S. and British nuclear bomb testing (Environmental Justice Case Studies 2004). In the “four corners” area where Colorado, Utah, Arizona, and New Mexico meet, a group of Hopi and Navajo families have been forcibly removed from their homes so the land could be mined by the Peabody Mining Company for coal valued at $10 billion (American Indian Cultural Support 2006). Years of uranium mining on the lands of the Navajo of New Mexico have led to serious health consequences, and reparations have been difficult to secure; in addition to the loss of life, people’s homes and other facilities have been contaminated (Frosch 2009). In yet another case, members of the Chippewa near White Pine, Michigan, were unable to stop the transport of hazardous sulfuric acid across reservation lands, but their activism helped bring an end to the mining project that used the acid (Environmental Justice Case Studies 2004).

These examples are only a few of the hundreds of incidents that American Indian tribes have faced and continue to battle against. Sadly, the mistreatment of the land’s original inhabitants continues via this institution of environmental racism. How might the work of sociologists help draw attention to—and eventually mitigate—this social problem?

Why does environmental racism exist? The reason is simple. Those with resources can raise awareness, money, and public attention to ensure that their communities are unsullied. This has led to an inequitable distribution of environmental burdens. Another method of keeping this inequity alive is NIMBY protests. Chemical plants, airports, landfills, and other municipal or corporate projects are often the subject of NIMBY demonstrations. And equally often, the NIMBYists win, and the objectionable project is moved closer to those who have fewer resources to fight it.

Key Takeaways

  •  The environment is a proper topic for sociological study. Environmental problems have a significant impact on people, and solutions to these problems require changes in economic and environmental policies.
  • Air pollution, global climate change, water pollution and inadequate sanitation, and hazardous waste are major environmental problems that threaten the planet.
  • Environmental problems are largely the result of human behavior and human decision making. Changes in human activity and decision making are thus necessary to improve the environment.
  • Environmental inequality and environmental racism are significant issues. Within the United States and around the world, environmental problems are more often found where poor people and people of color reside.

Self Check

 

Addressing Population and Urbanization Issues: What Sociology Suggests

The topics of population and urbanization raise many issues within the United States and also across the globe for which a sociological perspective is very relevant. We address of few of these issues here.

Population Issues

Perhaps the most serious population issue is world hunger. Both across the globe and within the United States, children and adults go hungry every day, and millions starve in the poorest nations in Africa and Asia. As the “Sociology Making a Difference” box in this chapter discussed, sociological research indicates that it is mistaken to blame world hunger on a scarcity of food. Instead, this body of research attributes world hunger to various inequalities in access to, and in the distribution of, what is actually a sufficient amount of food to feed the world’s people. To effectively reduce world hunger, inequalities across the globe and within the United States based on income, ethnicity, and gender must be addressed; some ways of doing so have been offered in previous chapters.

Population growth in poor nations has slowed but remains a significant problem. Their poverty, low educational levels, and rural settings all contribute to high birth rates. More effective contraception is needed to reduce their population growth, and the United Nations and other international bodies must bolster their efforts, with the aid of increased funding from rich nations, to provide contraception to poor nations. But contraceptive efforts will not be sufficient by themselves. Rather, it is also necessary to raise these nations’ economic circumstances and educational levels, as birth rates are lower in nations that are wealthier and more educated. In particular, efforts that raise women’s educational levels are especially important if contraceptive use is to increase. In all of these respects, we once again see the importance of a sociological perspective centering on the significance of socioeconomic inequality.

Urbanization Issues

Many urban issues are not, strictly speaking, sociological ones. For example, traffic congestion is arguably more of an engineering issue than a sociological issue, even if traffic congestion has many social consequences. Other urban issues are issues discussed in previous chapters that disproportionately affect urban areas. For example, crime is more common in urban areas than elsewhere, and racial and ethnic inequality is much more of an issue in urban areas than rural areas because of the concentration of people of color in our cities. Previous chapters have discussed such issues in some detail, and the strategies suggested by a sociological perspective for addressing these issues need not be repeated here.

Still other urban issues exist that this chapter was the first to present. Two of these involve crowding and housing. Cities are certainly crowded, and some parts of cities are especially crowded. Housing is expensive, and many urban residents live in dilapidated, substandard housing. Here again a sociological perspective offers some insight, as it reminds us that these problems are intimately related to inequalities of social class, race and ethnicity, and gender. Although it is critical to provide adequate, affordable housing to city residents, it is also important to remember that these various social inequalities affect who is in most need of such housing. Ultimately, strategies aimed at providing affordable housing will not succeed unless they recognize the importance of these social inequalities and unless other efforts reduce or eliminate these inequalities. Racial residential segregation also remains a serious problem in our nation’s urban centers, and sociologists have repeatedly shown that residential segregation contributes to many of the problems that urban African Americans experience. Reducing such segregation must be a fundamental goal of any strategy to help American cities.

References

Bennett, K. J., Olatosi, B., & Probst, J. C. (2009). Health disparities: A rural-urban chartbook. Columbia: South Carolina Rural Health Research Center.

Brown, D. M. (2008). Public transportation on the move in rural America. Washington, DC: Economic Research Service, U.S. Department of Agriculture.

Center for Rural Policy and Development. (2009). A region apart: A look at challenges and strategies for rural K–12 schools. Saint Peter, MN: Author.

DeKeseredy, W. S., & Schwartz, M. D. (2009). Dangerous exits: Escaping abusive relationships in rural America. New Brunswick, NJ: Rutgers University Press.

Johnson, A. O., Mink, M. D., Harun, N., Moore, C. G., Martin, A. B., & Bennett, K. J. (2008). Violence and drug use in rural teens: National prevalence estimates from the 2003 youth risk behavior survey. Journal of School Health, 78(10), 554–561.

National Advisory Committee on Rural Health and Human Services. (2008). The 2008 report to the secretary: Rural health and human services issues. Washington, DC: U.S. Department of Health and Human Services.

Whitacre, B. E. (2010). The diffusion of internet technologies to rural communities: A portrait of broadband supply and demand. American Behavioral Scientist, 53, 1283–1303.

License

Share This Book